Bounded Suboptimal Heuristic Search in Linear Space

نویسندگان

  • Matthew Hatem
  • Roni Stern
  • Wheeler Ruml
چکیده

It is commonly appreciated that solving search problems optimally can overrun time and memory constraints. Bounded suboptimal search algorithms trade increased solution cost for reduced solving time and memory consumption. However, even suboptimal search can overrun memory on large problems. The conventional approach to this problem is to combine a weighted admissible heuristic with an optimal linear space algorithm, resulting in algorithms such as Weighted IDA* (wIDA*). However, wIDA* does not exploit distanceto-go estimates or inadmissible heuristics, which have recently been shown to be helpful for suboptimal search. In this paper, we present a linear space analogue of Explicit Estimation Search (EES), a recent algorithm specifically designed for bounded suboptimal search. We call our method Iterative Deepening EES (IDEES). In an empirical evaluation, we show that IDEES dramatically outperforms wIDA* on domains with non-uniform edge costs and can scale to problems that are out of reach for the original EES.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heuristic Search with Limited Memory By

HEURISTIC SEARCH WITH LIMITED MEMORY by Matthew Hatem University of New Hampshire, May, 2014 Heuristic search algorithms are commonly used for solving problems in artificial intelligence. Unfortunately, the memory requirement of A*, the most widely used heuristic search algorithm, is often proportional to its running time, making it impractical for large problems. Several techniques exist for s...

متن کامل

Bounded Suboptimal Search in Linear Space: New Results

Bounded suboptimal search algorithms are usually faster than optimal ones, but they can still run out of memory on large problems. This paper makes three contributions. First, we show how solution length estimates, used by the current stateof-the-art linear-space bounded suboptimal search algorithm Iterative Deepening EES, can be used to improve unboundedspace suboptimal search. Second, we conv...

متن کامل

Recursive Best-First Search with Bounded Overhead

There are two major paradigms for linear-space heuristic search: iterative deepening (IDA*) and recursive best-first search (RBFS). While the node regeneration overhead of IDA* is easily characterized in terms of the heuristic branching factor, the overhead of RBFS depends on how widely the promising nodes are separated in the search tree, and is harder to anticipate. In this paper, we present ...

متن کامل

An Efficient Genetic Algorithm for Task Scheduling on Heterogeneous Computing Systems Based on TRIZ

An efficient assignment and scheduling of tasks is one of the key elements in effective utilization of heterogeneous multiprocessor systems. The task scheduling problem has been proven to be NP-hard is the reason why we used meta-heuristic methods for finding a suboptimal schedule. In this paper we proposed a new approach using TRIZ (specially 40 inventive principles). The basic idea of thi...

متن کامل

An Efficient Genetic Algorithm for Task Scheduling on Heterogeneous Computing Systems Based on TRIZ

An efficient assignment and scheduling of tasks is one of the key elements in effective utilization of heterogeneous multiprocessor systems. The task scheduling problem has been proven to be NP-hard is the reason why we used meta-heuristic methods for finding a suboptimal schedule. In this paper we proposed a new approach using TRIZ (specially 40 inventive principles). The basic idea of thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013